카테고리 없음

lab3: Dummy Q-learning (table) code

code0xff 2017. 10. 24. 23:00

김성훈 교수님의 Reinforcement Learning 강의 lab3의 Q-learning 실습 예제를 구현한 소스입니다.


강의가 필요하신 분을 위해 link 남겨드립니다.

https://www.youtube.com/watch?v=yOBKtGU6CG0&feature=youtu.be



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gym
import numpy as np
import matplotlib.pyplot as plt
from gym.envs.registration import register
import random as pr
 
def rargmax(vector):
    m = np.amax(vector)
    indices = np.nonzero(vector == m)[0]
    return pr.choice(indices)
 
register(
    id='FrozenLake-v3',
    entry_point='gym.envs.toy_text:FrozenLakeEnv',
    kwargs={'map_name''4x4',
            'is_slippery': False}
)
env = gym.make('FrozenLake-v3')
 
= np.zeros([env.observation_space.n,env.action_space.n])
num_episodes = 2000
rList = []
for i in range(num_episodes):
    state = env.reset()
    rAll = 0
    done = False
 
    while not done:
        action = rargmax(Q[state, :])
        new_state, reward, done,_ = env.step(action)
        Q[state,action] = reward + np.max(Q[new_state,:])
        rAll += reward
        state = new_state
 
    rList.append(rAll)
 
print("Success rate: " + str(sum(rList)/num_episodes))
print("Final Q-Table Values")
print("LEFT DOWN RIGHT UP")
print(Q)
plt.bar(range(len(rList)), rList, color="blue")
plt.show()
cs